

2

H A C K - r u n - l e a r n

s h a r e - l o v e - p l a y

code-create-draw

m a k e - d e s i g n - B E

think-write-break

participate-retry

modify-dream-try-

CONTENTS

3	 A Brief History of PICO-8
10	 Squashy
22 	Let’s Make Some Music
30	 Toy Train
38	 Geodezik
39	 Smoke Particle
43 	Welcome to PICO-8!

PICO-8 is a fanzine made by and for PICO-8 users.
The title is used with permission from Lexaloffle Games LLP.
For more information: www.pico-8.com
Contact: @arnaud_debock
Cover Illustration by @dotsukiHARA

3

A Brief History of PICO-8
Greetings, zine readers. My name is zep, or Joseph White in real
life. I’m the author of PICO-8, and was naturally very pleased to
find out about this publication! As this is issue #1, I thought
it might be fitting to give you a look into how PICO-8 came about
in the first place.

Early Influences

It might not come as much of a surprise that I grew up with classic
home computers like the Apple IIe,C64 and BBC Micro. Although my
family didn’t own one, I spent plenty of time crashing friends’
houses and camping out in my father’s psychology lab, where he
used Beebs to control hardware for conducting memory experiments
on pigeons. This is how I learned to program -- typing in
snippets of code from the BBC manual and trying to construct
anything evenly remotely resembling a playable video game.

The feeling of creating programs for those machines is a
visceral childhood memory ranking right up there with the smell
of the macrocarpa tree I climbed with my first girlfriend, or the
metallic taste of blood after crashing my bike on a gravel path
when I was 8.

There was something about plotting large colourful pixels and
punching in programs on a large clunky keyboard that resonated
with my 8-year-old brain. The idea of turning on the computer and
seeing anything except a prompt inviting the beginning of a new
program would have seemed absurd -- it was meant to be just you,
the program, and the inky black canvas.

Look at this little fellow!
Where will he go? What will he do?

4

Tools and Editors

As I began to set about the task of creating whole games, I didn’t
know what kind of tools existed for making graphics, and it didn’t
occur to me to look. It became a kind of ritual at the start of
each project to improve or rewrite a sprite editor, mapper, sound
editor, or any other tools I needed to make each game.

This habit ended up manifesting itself as poido (“Pointy Dough”)
-- a general purpose in-house editor created at the beginning of
Lexaloffle. It has editing modes for sprites, palettes, models,
uv maps, skeletal animation, audio, and later a modular sound
synthesizer and voxel modeler.

The feature of poido I am most fond of is quite simple:
a collection of mixed resources can be edited and stored in a
single file (a “pod”, shown above), eliminating the need to jump
between different editors or to manage sprite sheets or individual
asset files.This became the model for Voxatron and PICO-8 editors.

LEX500

Fast forward to 2004. I’d been doing Lexaloffle for a couple of
years -- released a few puzzle games that didn’t sell very well,
and was making small things for fun to stay sane while I did
contract work to stay afloat. One of them was a project called
LEX500 which was named after the Amiga 500, but was really more
like a Beeb. It had a resolution of 240x240, a fixed 16 colour
palette, and booted up into a BASIC interpreter environment.

5

LEX500 remained a bunch of design notes and mockups -- I regarded
it at the time as a design exercise. There wasn’t much that
separated it from simply firing up a BBC Micro emulator, although
it did have an integrated sprite editor. One quirky feature of
LEX500 was that sprites would show up directly in the code editor
when you referenced them.

Visual Formats

Apart from LEX500, I started playing with other simulated display
formats that would give anything made with them their own
particular visual style.
The first one was inspired by a combination of Ken Silverman’s
Voxlap demo, and some happy ray-tracing accidents that led to a
64x64x32 block of voxels rendered as cubes. I used it to mock up
an adventure game called ‘Felix and the Firebird’ (below), which
eventually became the basis for Voxatron and Voxatron Story.

6

The other display was vector based with a 2-channel colour for-
mat: one channel for hue and another for intensity. Polygons would
be rendered into the channels separately and then converted into
RGB at the end of each frame. I was using this for a prototype of
Conflux (2008) and Swarm Racer 3000.

Working with these formats in conjunction with complementary tools
gave me a taste for creating something that I vaguely understood
as platforms or mediums;in the same way that games made for retro
computers had a particular look and feel, the underlying platform
could be treated as a separate design problem that would drive the
identity of games made with them.

Voxatron

Voxatron started in 2010 as a way to do something small with my
voxel display. It was initially only a Robotron-style shooter
(hence the name), but after a preview trailer blew up on YouTube,
I ditched the job I was doing at the time to go all in on the
opportunity to expand it to include the original adventure game
I had envisioned. Because of the unusual format, I also saw it as
a chance to offer a general platform so that other users could try
making and sharing their own voxelly work.

These varied goals created a design problem. How should all these
parts be presented to the player without awkwardly slotting them
into commonly understood game vocabulary? Game modes, mini-games,
DLC, mods, levels, user-made levels; each one comes with a set of
expectations that messes with how the content is perceived.

This was especially problematic for user-made content.
I wanted authors to have authorship; to be making their own thing
on a platform rather than making a level or mod for an existing
game. Some work might not even resemble levels or games at all,
but toys or curiosities or visual demos.

It wasn’t until half-way through the project that I stumbled into
the cartridges analogy. Instead of having all of these separate
types of content along with their semantic baggage and
expectations, I could instead present them all as cartridges.
The notion of a cartridge could be used in a way that was general
enough to capture what was needed: a standard shareable unit of
expression.

7

PICO-8

PICO-8 began as a resurrection of LEX500 in 2012. I needed to
add a general scripting component to Voxatron at some stage, but
I didn’t have much experience with that kind of thing. If I made
LEX500, it would be a good way to get a grip on scripting, and
perhaps later on it would become an accessible way to introduce
Voxatron users to programming.

Another driving factor was opening the Lexaloffle office to the
public several days a week as a shared workspace in the form of
Pico Pico Cafe (which PICO-8 was partly named after). One of the
early regulars there was Julien Quint, an all-round language
theory and implementation guy, who shares my fondness for offbeat
side-projects and inspired me to write a first pass at a BASIC
interpretor for LEX500.

We started doing a monthly show-and-tell for designers called
Picotachi (again with the Pico) and it turned out PICO-8 was a
good thing to hack on so that I had something to show when nothing
visually accessible was happening with Voxatron.

It gradually became apparent that the two projects had more in
common than I had anticipated.

8

Because Voxatron has a complete set of design tools integrated
with it, it seemed natural to do the same for PICO-8, and I could
finally see why that was important.
I had been mocking up Voxatron graphics in 2D at a low resolution,
and eventually went with 128x128 for PICO-8 so that it would fit
into a single slice of Voxatron’s volumetric display, making it a
viable host platform. PICO-8 also shared Voxatron’s goals of op-
erating as a platform that could leverage the Lexaloffle BBS for
distribution and collaboration.

PICO-8 had become a minimal 2D distillation of Voxatron.

An early screenshot of a PICO-8 test when I was trying to
estimate how many tiles a game might need to be fun to design
but not laborious to implement. It initially had a 160x120
screen with a separate 320x240 text mode layer for the code
editor because I thought it wouldn’t be possible to fit a
readable text editor in at the native graphics resolution.
Perhaps I was right about that.

The first iteration included a BASIC interpretor that was
implemented by translating from BASIC to Lua internally in order
to use the Lua vm.

9

I was gradually enamoured by Lua during this process, and
ditched the BASIC facade altogether.

Although it was fun to think about what a real PICO-8 might look
like, I never felt it would benefit from having an official
physical form. Choosing specs was more about encouraging a
certain design culture and development experience rather than
being realistic or plausible. This was also true of the choice to
limit controls to DPAD and 2 buttons, but a nice side effect is
that users might be able to build their own PICO-8s with integrat-
ed controllers more easily one day.

Fantasy Console

So, I had all of these things going on that pointed at the concept
of a “fantasy console”: Cartridges, dev tools, a community
platform, display formats and abstracted controls.
But I still couldn’t see it! PICO-8 initially had “disks” and
“programs” instead of cartridges -- for a while it was more of a
fantasy home computer, which didn’t sit quite right.
And Voxatron was still a game that happened to have carts and an
editor included. If I tried to explain to anyone that Voxatron was
actually more of a platform than anything else, they would look
at me with lifeless eyes. Like a doll’s eyes.

PICO-8 had grown into something that stood by itself, and looking
at it next to Voxatron helped to more clearly see both of them.
I don’t remember how I made the final step into console territory,
but by that stage there were many elements pushing in that
direction. It gave Voxatron a good reason to have cartridges,
offered a cute and approachable way to present these two otherwise
abstract projects, and gave PICO-8 a focused identity to design
around. Ideas like having a fixed 32k memory layout mapped onto
the cartridge data layout would have been hard to see otherwise.

It might have been much easier if I started with the question
“What would it be like to create a fictional console?” and work
forwards from that. Instead I went backwards though a forest of
fuzzy ideas and at the end realised: oh, these things are just
consoles.

-- zep

10

SQUASHY
Let’s make a game of squash, in the style of the classic game
PONG!

Getting around in PICO-8

When you boot PICO-8, you start in Command Mode.

From here, you can press the Escape (or ESC) key on the keyboard
to go into Editor Mode, where you can create your games.

When you want to run your game, press ESC to return to Command
Mode, and then type run and press RETURN (↵).

To get back to Command Mode again, just press ESC at any time in
your game!

11

When you’re in Command Mode, you can also save your game by
typing save game-name ↵.

To load your game up again when you come back next,
type load game-name ↵.

If you forget what you called it, type dir ↵ and PICO-8 will give
you a list of all the games it knows about!

For this game, you might want to use the name squashy, so to save
it you’d type save squashy

Now we’re ready to get started making our first game in PICO-8!

1. A Moving Paddle

Let’s make a bat move about!

Press the ESC key to go into editor mode, and then type this.
It’s worth pressing SPACE at the start of lines within if and
function blocks, because it makes it much easier to read later.
It’s also worth putting in comments -- these are lines that are
started with --, and the computer ignores them, so they’re like
little notes just for you!

12

 -- paddle

 padx=52

 pady=122

 padw=24

 padh=4

 function movepaddle()

 if btn (0) then

 padx-=3

 elseif btn(1) then

 padx+=3

 end

 end

 function _update()

 movepaddle()

 end

 function _draw()

 -- clear the screen

 rectfill(0,0, 128,128, 3)

 -- draw the paddle

 rectfill(padx,pady, padx+padw,pady+padh, 15)

 end

Hit the ESC key and type RUN. When you press ← or → the bat
should move!

See how we’ve made a function called movepaddle(). That’ll make
it easier to find what code does what later.

The commands we used

function _update() -- this gets called 30 times every second.

 	 it’s where we will update everything in the game

13

function _draw() - -this is called after update

	 it’s where we draw the game

	

btn(b) -- check to see if a button is down. the number b means this:

	 0 is ←, 1 is → , 2 is ↑ , 3 is ↓ , 4 is z and 5 is x

 rectfill(x1,y1, x2,y2, col) - - draw a rectangle in the colour col

	 x1,y1 should be the coordinates of the top-left corner

	 x2,x2 should be the bottom-right corner

2. Now let’s add a ball

Press ESC twice to get back to the code editor.

Add some new variables at the top of the file so we know where to
put the ball:
 -- ball

 ballx=64

 bally=64

 ballsize=3

 ballxdir=5

 ballydir=-3

And then add the following to the _draw() function at the bottom
of the file:
 function _draw()

 -- clear the screen

 rectfill(0,0, 128,128, 3)

 -- draw the paddle

 rectfill(padx,pady, padx+padw,pady+padh, 15)

 -- draw the ball

 circfill(ballx,bally,ballsize,15)

 end

Press ESC to get out of the editor and type RUN to see the ball
appear!

14

The new commands we used

 circfill(x,y,size,col) -- draw a circle with a centre at x,y

3. A still ball is a boring ball

Press ESC until you’re back to the code editor, then add a new
function above the _update() function:

 function moveball()

 ballx+=ballxdir

 bally+=ballydir

 end

And then make sure to call it in _update() like this:

 function _update()

 movepaddle()

 moveball()

 end

run what you have, and you should have a ball that flies off to
the top-right of the screen.

4. Keep it on the pitch

The ball needs to bounce off the top & sides of the screen. That’s
not too complicated -- we just need to check the x and y positions
of the ball.
Remember that the top-left of the screen is 0,0

and the bottom-right of the screen is 127,127.

To make the ball bounce off a side, we just have to flip the sign
of the direction of the ball -- if the speed is greater than zero,
the ball moves to the right & if the speed is less than zero, the
ball moves to the left.

Make a great sound for when the ball hits the edge of the screen;
something like this works!

15

Add a new function to do that after the end of the moveball()
function:

 function bounceball()

 -- left

 if ballx < ballsize then

 ballxdir=-ballxdir

 sfx(0)

 end

 -- right

 if ballx > 128-ballsize then

 ballxdir=-ballxdir

 sfx(0)

 end

 -- top

 if bally < ballsize then

 ballydir=-ballydir

 sfx(0)

 end

 end

And then call it from _update():

16

 function _update()

 movepaddle()

 bounceball()

 moveball()

 end

run what you have, and you should have a ball bouncing up the
screen and then down again until it falls off the bottom of the
screen.

The new commands we used

 sfx(number) -- play a sound

5. HIT THAT BALL!

Figuring out whether the ball has hit the paddle is the fiddliest
part of the whole game, so bear with it!

We need to check to see if the ball’s x position is within the
width of the paddle, and whether the ball has gone into the pad-
dle.

We do that using the special and word in pico8, the same as you
would in English.

Add a bouncepaddle function after the bounceball function:

 -- bounce the ball off the paddle

 function bouncepaddle()

 if ballx>=padx and

 ballx<=padx+padw and

 bally>pady then

 sfx(0)

 ballydir=-ballydir

 end

 end

If you like, you can make a different sound for when the ball hits
the paddle and play that instead!

17

Don’t forget to call it from _update()

 function _update()

 movepaddle()

 bounceball()

 bouncepaddle()

 moveball()

 end

If you run that, you should be able to keep the ball in the screen
by moving the paddle (though it’ll still disappear when it goes
off the bottom!)

6. Can we have our ball back?

When the ball flies off the bottom of the screen, we have to put
it back in the middle of the screen. We should really lose a life
too -- we’ll get to that later though!

Add a new function, after moveball():

 function losedeadball()

 if bally>128 then

 sfx(3)

 bally=24

 end

 end

Make sure to call it from _update():

 function _update()

 movepaddle()

 bounceball()

 bouncepaddle()

 moveball()

 losedeadball()

 end

And make a fun sound for it falling off the screen.
Something like this works well:

18

When you run this, you should have the best part of a game!
Now we need to move on to...

7. Scoring!

Obviously as we have a game, we want to be able to have a hi-score!
We’ll need a new variable at the top of the program:

 score=0

Then, every time the ball bounces off the paddle, we’ll increase
the score. Add a line to the the bouncepaddle function:

 -- bounce the ball off the paddle

 function bouncepaddle()

 if ballx>=padx and

 ballx<=padx+padw and

 bally>pady then

 sfx(0)

 score+=10	 -- increase the score on a hit!

 ballydir=-ballydir

 end

 end

19

Then draw the score on the screen by adding a line to the
_draw() function:

 function _draw()

 -- clear the screen

 rectfill(0,0, 128,128, 3)

 -- draw the score

 print(score, 12, 6, 15)

 -- draw the paddle

 rectfill(padx,pady, padx+padw,pady+padh, 15)

 -- draw the ball

 circfill(ballx,bally,ballsize,15)

 end

Run that and Bob’s your uncle!

The new commands we used

 print(message,x,y,col) -- write a message on the screen.

 		 x,y is the bottom-left of the first letter

8.HEARTS

The next piece of the puzzle is limiting the number of lives the
player has. We’ll need to make a sprite (a small picture) to show
a heart, so open up the Sprite Editor in PICO-8 and make a sprite
like this one:

20

Remember the sprite number 004 in this case!
Now you can add a new variable at the top of the file: lives=3

And the code to draw it in _draw():

 function _draw()

 -- clear the screen

 rectfill(0,0, 128,128, 3)

 -- draw the lives

 for i=1,lives do

 spr(004, 90+i*8, 4)

 end

 -- draw the score

 print(score, 12, 6, 15)

 -- draw the paddle

 rectfill(padx,pady,

 padx+padw,pady+padh, 15)

 -- draw the ball

 circfill(ballx,bally,ballsize,15)

 end

21

(Make sure the number after spr matches the number of the sprite
you made!)

The last bit we need to add loses a life when the ball goes off
the bottom, and ends the game when the player runs out of lives.
We need to make the losedeadball function a bit more complicated
- change it to this:

 function losedeadball()

 if bally>128-ballsize then

 if lives>0 then

 -- next life

 sfx(3)

 bally=24

 lives-=1

 else

 -- game over

 ballydir=0

 ballxdir=0

 bally=64

 end

 end

 end

You can make a fun sound for game over too! Play it with the
sfx() function in the section marked game over.

The new commands we used

spr(number,x,y) -- draw a sprite onto the screen with the top-left at x,y

----Alex MOLE

----@TheRealMolen

22

Let’s Make Some Music!
When working with the PICO-8 tracker, there are two tools you
should get yourself comfortable with.

1. The Sfx Editor

With this, you’ll create the individual components of your songs
as well as sound effects.
Let’s break it down! From top left to bottom right, we got:

1. The currently selected sequence.
2. The speed the sequence will be played at.
3. The loop start and end point.
4. The octave a new note will be set at.
5. The Instrument a new note will be played with.
6. The Volume a new note will be played at.
7. With this, you’ll create the individual components of your
 songs as well as sound effects.

23

The bottom half shows your notes, with four columns holding eight
notes each.

Each note holds the following information:

•a letter, indicating the note’s frequency.
•a dot or hash, indicating if it’s a half or full tone.
•a grey number indicating the octave.
•a red number, indicating the instrument.
•a blue number, indicating the volume.
•a dark grey number, indicating an effect.

Notes are entered via a standard musical
keyboard layout.
The pictured sequence shows
all available notes in two octaves.

The corresponding keys are:
•Column 1: 2, 3, 5, 6, 7
•Column 2: q, w, e, r, t, y, u, i
•Column 3: s, d, g, h, j
•Column 4: z, x, c, v, b, n, m

Available effects are:
0 none 	 1 slide 	 2 vibrato 	 3 drop 	 4 fade_in 		
5 fade_out 	6 arp fast 	7 arp slow

1.1 The Sfx Editor-Graph Mode

By clicking on the little icon in the top left, you can switch
to the sequencer mode of the sfx editor. The main difference of
this mode is that each note is represented graphically instead of
numerically, as it would be in a sequencer. Furthermore, you can
use your mouse to create notes, adjust note frequencies, octaves,
volume and so on.

24

Personally, I don’t use this mode due to it’s lack of precision
over the hard numbers of the tracker, so I can’t tell you much
about it.

2. The Pattern Editor
In the pattern editor, you arrange the sequences you made in the
sfx editor into songs.
All functionalities from the sfx editor are retained in the
pattern editor.

25

Additionally, there is:
1.A list of patterns with four colored dots each representing 	
 the selected sequences there in.
2.The behaviour of the current pattern. Loop start, loop back 	
 & stop.
3.The individual sequences of the currently selected pattern.
 Each pattern can hold up to four.

In your code, you select a pattern number to be played with
 MUSIC(number). The appropriate pattern will then play once.
Depending on the pattern behaviour set in the top right of each
pattern, it will then either play the next pattern in sequence,
loop the current pattern indefinitely or stop.

You can edit the notes of your sequence in the same way as in the
sfx editor.The only functionalities not present in the pattern
editor are the speed and loop point settings.

3. Making Music

Now that you know the functionalities of the PICO-8 tracker, you
can start making some sick chiptune!

Here is a list of hotkeys that might be useful:
•Play / Stop: Space
•Enter note: q2w3er5t6y7ui zsxdcvgbhnjm
•Delete note: Backspace(Alternatively, set volume to 0)
•Increase / decrease pattern, speed etc. by 4:
 Shift + left click / right click
•Sfx editor - set all notes to instrument / effect:
 Shift + click instrument / effect
•Release looping sequence : A

Here’s a couple tips to get you going:
• The drop effect, 3, is good for bassdrums
• The noise instrument, 6, is good for snares and hihats
• A full song should consist of at least an intro, a main loop a 	
 and a final, surprising, loop back pattern.
• A continuous loop should consist of at least 4 different
 patterns to not sound samey. The more, the better!
• When making your music, keep in mind that you only have four
channels to play your music+ sound effects on.
• A bass with octave 0-1, a middle to high lead with octave 1-3

26

and drums are a good basis for a full sound.
• Play around with many combinations of effects, instrument,
octaves, volume and frequencies!
• Change the default speed of your songs. You can make sick drum
loops by having a high speed and far apart notes.

4. Playing Music

playing =0

music(0)

function _update ()

end

function _draw ()

cls()

print(“Track” ..PLaying)

end

In order to play the music you’ve made inside of your game, all
you need to do is type MUSIC(n), where n represents the number of
the pattern, shown as element (1) in the Pattern Editor screen-
shot in section 2 of this tutorial. You can play any pattern you
want, just note that empty patterns won’t play anything back, of
course. The rest of the code shown is added because PICO-8 would
otherwise assume this an empty program and quit it instantly.

To avoid this, we have added a little code to clear the screen and
show us which track is playing.

Line by line:

PLAYING = 0 is set as a variable that is 0.
MUSIC(0) is called once to start playing our music.
FUNCTION _UPDATE () and FUNCTION _DRAW () cause otherwise our game
had nothing to do and wouldn’t run.

You can actually just add both of these functions, leave them emp-
ty, and PICO-8 will play your music just fine. The rest is just
extra.

27

CLS() clears the screen every frame, so the code in the next line
will only be visible once.

PRINT(“TRACK “ .. PLAYING) writes TRACK to the screen along with the
variable PLAYING, which holds our Track number.

Pattern behaviour:

Depending on the pattern behaviour set in the Pattern Editor,
shown as element (2) in the before mentioned screenshot, the
MUSIC function will either play the next pattern in sequence
once your selected pattern was played in full once if you’ve se-
lected neither loop start, loop back or end. If you’ve selected
the third symbol, end, the music will stop after the pattern was
played. If you’ve selected loop back, the second symbol, the last
pattern before the currently played pattern that had loop start
activated will be played next. That way you can loop bigger sets
of patterns, by giving the last in sequence a loop back, and the
first a loop start. If you set both loop back and loop start on
any pattern, it will repeat until it is stopped. That’s it! Now
combine this knowledge with other tutorials and make some great
PICO-8 programs!

Thanks for reading, I hope I could help you understand trackers
a bit better.
If you have any more questions, tweet at me @pizzamakesgames.

--Feliks Balzer

28

29

@
b
i
t
m
O
O

c
o
n
s
o
l
e
 d
e
s
i
g
n

30

TOY TRAIN
I always loved watching my grandpa’s toy trains zip around their
tracks, and I’m working on a complicated train game right now, but
I decided to try and contribute something simpler to this zine,
in the same vein.

This is not so much a game as a little toy - a train that zips
around its little track, perfectly negotiating right-angle turns.
Very impressive engineering on the part of the toymakers!

We’re going to start with an _INIT() method, which is called when-
ever you use the RUN command (or CTRL-R, or CMD-R).
Think of it as the setup for the game.

function _init()

cls()

switch_state=0

train={{64,8},{72,8},{80,8}}

end

The map

31

The really handy thing about _INIT() is that you can run it again
at any time and it will seem like the game was reset. So try
to put all your important setup stuff in there. In this case I
just have two variables, SWITCH_STATE and TRAIN. SWITCH_STATE just
tells me whether the switch for the train is on(1) or off (0). We
always want to start with the train off so the player gets the
satisfaction of turning it on. And then TRAIN is a table, which is
basically a list of lists. Each pair of values is a two-element
list, representing a segment of the train. The first value is the
X position, and the second value is the Y position. You can see at
a glance there will be three segments in this train, but you can
add as many as you like. Just be careful where you’re positioning
them. We’ll see why in a moment.

function move_segment(s,dir)

spd=dir*2

if(s[2]==8) --TOP SIDE

then

	 if(s[1]==112) --top RIGHT

	 then

		 s[2]+=spd

	 else

		 s[1]+=spd

	 end

else

if(s [1]==112) --right SIDE

then

	 if(s [2]==112) --bottom RIGHT

	 then

		 s[1]-=spd

	 else

	 s[2]+=spd

	 end

else

if(s[2]==112) --bottom side

then

	 if(s[1]==8) --bottom side then

32

		 s[2]-=spd

	 else

		 s[1]-=spd

	 end

else

if(s [1]==8) -- left side

then

	 if(s [2]==8) --top left

	 then

		 s[1]+=spd

	 else

		 s[2]-=spd

	 end

end

end

end

end

end

The MOVE_SEGMENT function will let us advance one segment of the
train (which we call S) along the track, taking into account the
turns it will need to make along the way.
It does this by checking the co-ordinates of S and deciding wheth-
er it needs to move in the X direction or the Y direction at this
time. At the beginning, S has a Y/vertical position of 8, and an
X/horizontal position NOT matching 112.
Therefore when the SWITCH_STATE is 1, we will be increasing the X
position of S by 2 every execution until X reaches 112 (indicating
the top-right corner).
When S reaches the top-right corner, its Y/vertical position is
8, and its X/horizontal position is 112. Now we are executing
slightly different parts of the code. Instead of increasing the X
position (moving right), we must move down. So the train’s Y po-
sition is increased, sending it down the screen until it reaches
the next corner. We repeat this method for the other three
corners, and the result is that the train segment is moved along
in one dimension until it reaches a limit, at which point it be-
gins moving in the other dimension, and so on.

33

function adv_switch()

if(switch_state<1)

then

	 switch_state+=1

else

	 switch_state=0

end

end

This function moves the switch to the next position (ADV-ances
it). You can use this to manage as many switch states as you like,
just by increasing the number in the IF statement. Having 1 in
that IF statement allows us to have two switch states, 2 would
allow three states, etc. Different states could do very different
things!

function move_train()

for t in all(train)

do

	 move_segment(t,switch_state)

end

end

In the MOVE_TRAIN function, we do something very simple: loop
through all the train segments, and move each one. FOR T IN ALL(SOME_

LIST) will let you do some operations (inside the DO...END) on
each element, temporarily referred to as T. In this case, we’ve
already done the hard work, so we’re just going to call that other
function, MOVE_SEGMENT, for each. We pass in SWITCH_STATE as well,
because if SWITCH_STATE is 0, we don’t want the train moving.
Alternatively we could just check SWITCH_STATE and only do the FOR
loop if its value is 1, but this way we could potentially add more
stuff to the MOVE_SEGMENT function later (see below).

34

function _update()

if(btnp(4))

then

	 adv_switch()

end

move_train()

end

The _UPDATE function, as you have already seen in a previous les-
son, is called every time the game updates itself (30 times a
second). The BTNP function checks if a given button has *just*
been pressed, this very frame, and will wait a few frames before
activating again if the button is held down. So you can use it
very neatly for switches. Pressing Player 1’s button 4 (usually Z)
will call the ADV_SWITCH method shown above, and turn the switch.
MOVE_TRAIN is something we want to call whether a button is being
pressed or not, so we put that outside the IF...END block.

function draw_train()

local len=count(train)

for t=1,len

do

	 if(t==1)

	 then

		 sprite=11

	 else

	 if(t==len)

	 then

		 sprite=13

	 else

		 sprite=12

	 end

	 end

	 spr(sprite,train[t][1],train[t][2])

end

end

Now we have to actually draw the train. This is usually the easy
part, it’s just a little less neat because I wanted to have

35

special starting and ending segments. This time we use a differ-
ent sort of FOR loop, which starts out with T set to 1, and con-
tinues, adding one each time, until T is equal to the length of
the TRAIN list. This allows us to not only do things with each
segment, but also know where in the list we are easily. In this
case, the first segment/element of the list is the last segment
of the train, so we want to put a slightly more boring sprite
there. The last element of the list is the first segment of the
train, so we want to make that one more interesting. And all the
ones in between will have the same sprite for each of them.

function draw_switch()

if(switch_state==1)

then

sspr(0,16,16,16,56,56,16,16)

else

sspr(64,16,16,16,56,56,16,16)

end

end

This function checks the SWITCH_STATE and picks the correct switch
image to draw based on that. The switch images are two sprites
wide by two sprites high (16x16px). We use the SSPR (‘stretch
sprite’) function to make this work easily, although we could also
just draw each sprite one by one. The first two arguments tell the
program where to start drawing (x=0, y=16 if the switch is on).
The next two arguments tell the program how big the area we want
to pull from the sprite sheet is. As we saw above, that’s going to
be 16 across and 16 down from the original point. Then we have to
give an X and Y coordinate to start drawing the sprite, and again
the size of the area we want to fill. If you doubled the last two
arguments, to (32, 32), you would draw the switch twice as large.
SSPR is fun to play around with, but it’s also useful even if you
don’t stretch sprites at all.

function _draw()

map(0,0,0,0,16,16)

draw_switch()

draw_train()

end

36

Sprites

This function is called every time _UPDATE is called (unless PICO-8
is running slowly). It uses the MAP function to pull a big section
of the map data and display it on screen. The first two arguments
are where to start drawing on the PICO-8 screen (where 0,0 is the
top left corner), the second pair of arguments tell it where in
the map data to start, and the third pair of arguments tell it how
many sprites in each direction to draw. One full screen is 16x16
sprites, or 128x128 pixels. So it pulls out 16x16 sprites, based
on the map data, and draws them to the screen before doing any-
thing else. Then it calls the DRAW_SWITCH and DRAW_TRAIN functions
which we looked at above. (These things are drawn in ordered lay-
ers, so if, for example, you wanted to draw a little bridge over
the train, you would draw it *after* the train.)

We saw above that MAP draws sprites based on map data, but it
might not be clear what is actually going on. The ‘map’ which you
can see in the first screenshot is only a long list of numbers,
telling the program which sprite to put where. So the first row of
sprites in the map data would look something like “02 03 19 18 03
02” and so on. It just goes to the sprite sheet (second screen-
shot) and picks out the sprite at that position. This is particu-
larly cool because you can at any time change your sprite 02 and
you will instantly see the change in all your maps.

37

Mapping and sprite stuff is a whole thing in itself, but I enjoy
playing with it very much. It’s a fun way to be kind of working
on your game without getting too technical.

Homework:
- There is at LEAST one way to neaten up the MOVE_SEGMENT
 function. Try to make it smaller.
- Now you’ve neatened something up, make things messier by
 trying to make the train go the other way.
- You could probably add a third switch position to make the train
 go, stop, and reverse.
- For serious cool points, try to make the train slow down
 after it’s turned off, rather than stopping dead. You could
 even make it ‘chuff’ up to speed when turned on.
- Change any (or all) of the sprites to change the feel of the 	
 game, or just to make it look better!
 What other things could use the same mechanics but with
 different visuals?

Thanks for reading! I hope this has been somewhat educational for
you. Let me know if you enjoyed this and especially if you made
anything sweet using my game as a base!
Cheers,

James (PROGRAM_IX)

You can find the original version here :
http://www.lexaloffle.com/bbs/?tid=2253

38

GEODEZIK
@aliceffekt
http://xxiivv.com

frame = 0

function _update()

 frame += 1

 -- loop at f127

 if frame > 127 then

 frame = 0

 end

end

function _draw()

 rectfill(0,0,127,127,0)

 i = 0

 while(i < 20) do

 e = (i * 0.5)

 line(0,(frame*e),127-(frame*e),0,7)

 line((frame*e),127,0,(frame*e),7)

 line(127,127-(frame*e),(frame*e),127,7)

 line(127-(frame*e),0,127,127-(frame*e),7)

 i += 1

 end

end

39

SMOKE PARTICLE
By Mozz http://mozz.itch.io/

This tutorial assumes that you know the basics of a PICO-8
program, including the functions _init(), _update() and _draw().
Particle effects are the most popular method to create dust and
smoke and sparkles in a game: they allow for game worlds to feel
more alive.Basically, a particle effects system is one which
creates a series of individual particles that have some sort of
physics applied to them. In this tutorial, the particles will be
a series of circles, that will grow based on the life of the
particle, emulating the dissipation of smoke and clouds.

For this effect we will need to write three functions: one to make
the smoke; one to move the smoke; and one to draw the smoke.

1.Making the Particle

When you make the smoke you want to think about what variables you
might need to have in the future and what you want to have
control over when you create the smoke. For this example I decided
I wanted to set the initial x-y values, color of the smoke and the
starting size of the smoke particle.
These variables go in the function parameters. The rest of the
variables in the function will hold the current x and y value of
the particle, as well as variables that will control the phys-
ics later in the program. the letter d in front of a variable is
mathematical shorthand for delta, or “a change in”. So dx would
be “the change in x” and will set the velocity of the particle in
that direction.
This will help us remember what the variable is for later.
Variable t and max_t set how long a particle lasts in seconds,
width and width_final will make the particle start out a certain
size and grow over time and ddy is the change in dy, and will
simulate acceleration on the y axis.
We then add the list “s” to a list “smoke” that will contain every
particle we create in the game. So in the end we will have a list
named “smoke” that contains a number of lists that holds the data
for each instance of smoke particle.

40

function make_smoke(x,y,init_size,col)

	 local s = {}

	 s.x=x

	 s.y=y

	 s.col=col

	 s.width = init_size

	 s.width_final = init_size + rnd(3)+1

	 s.t=0

	 s.max_t = 30+rnd(10)

	 s.dx = (rnd(.8).4)

	 s.dy = rnd(.05)

	 s.ddy = .02

	 add(smoke,s)

	 return s

end

function _init()

	 smoke = {}

	 cursorX = 50

	 cursorY = 50

	 color = 7

end

2.Moving the particle

Now that we have a function that will add a smoke particle to the
game, we need to define how it moves. In move_smoke, we will change
the x and y values of the particle based on variables we set when
we created it. With each step of move_smoke, we will first check
to see if the particle has reached its max life, and if it has we
remove it from “smoke”. Then we grow the width of the particle if
we are within 15 steps of the end of its life (not to exceed the
width_final variable). Then we apply the dx and dy values as well
as ddy (which stands in for gravity) to future calls of dy.
In _update I decided just to create a smoke particle each step
by calling make_smoke, just for testing. The program also check
to see if you have pressed one of the arrow keys and changes the
“cursorX” and “cursorY” values based on the player’s input. We use
those values to determine where we create new particles. Color is
set randomly when you press “button 1”.

41

function move_smoke(sp)

if (sp.t > sp.max_t) then

	 del(smoke,sp)

end

if (sp.t > sp.max_t15) then

	 sp.width +=1

	 sp.width = min(sp.width,sp.width_final)

end

sp.x = sp.x + sp.dx

sp.y = sp.y + sp.dy

sp.dy= sp.dy+ sp.ddy

sp.t = sp.t + 1

end

function _update ()

foreach(smoke, move_smoke)

if btn(0,0) then cursorX=1 end

if btn(1,0) then cursorX+=1 end

if btn(2,0) then cursorY-=1 end

if btn(3,0) then cursorY+=1 end

if btn(4,0) then color = flr(rand(16)) end

make_smoke(cursorX,cursorY,rnd(4),color)

end

3. Drawing the particle

Ok, we’ve created a particle and it can move but we will need to
get it to draw to the screen before we can see it. The method for
this is fairly simple: Each time the _draw function is called,
foreach() will call the function draw_smoke for each entry in the
list “smoke”. draw_smoke will then use the values of the current
particle to draw a filled circle at its current x and y values,
with its current width and color.

42

function draw_smoke(s)

circfill(s.x, s.y,s.width, s.col)

end

function _draw()

cls()

foreach(smoke, draw_smoke)

end

4.Further Steps

You can now play with different variables to change the effect by
increasing the velocity and gravity of spawned particles to create
a different feeling. You can also create an emitter that creates
different kinds of particles for complicated layered effects. And
if you would like the particle to be something more interesting
than just a circle, replace circfill() with spr() and use your
own sprites.

For more examples of what you can do with
particles, check out the Advanced
Particle System Library, posted by Viza, which
you can find through this QR code
http://www.lexaloffle.com/bbs/?tid=1920

43

CELESTE

Author’s comment:
“We used pretty much all
our resources for this.
8186/8192 code, the entire
spritemap, the entire map,
and 63/64 sounds. Let us
know what you think!”

PICO 8’s killer app. If you
only play one PICO-8 game,
make it this one.

http://www.lexaloffle.com/
bbs/?tid=2145

Stories at the Dawn

A minimal story platformer
with four endings. A great
example of what can be done
really well in PICO 8’s
constraints.

http://www.lexaloffle.com/
bbs/?tid=1919

Welcome to PICO 8!
@terrycavanagh

New to PICO-8? Here are a few carts that are a great place to
start:

44

PAT Shooter

Author’s comment:
when asked “What does
P.A.T. stand for?”: “Noth-
ing. Actually I was hoping
nobody will ask.”

http://www.lexaloffle.com/
bbs/?tid=1867

Transdimensional
Butterfly

There are loads of carts
like this on the BBS, a
bit like 90s graphics demos
with music.
This one, by PICO-8 creator
Lexaloffle, is gorgeous,
and has a great soundtrack
too.

http://www.lexaloffle.com/
bbs/?tid=2109

45

The Tower of Archeos

Author’s comment:
“Reach the 8th floor to
fight Archeon.”

A fantastically crafted
puzzle game, by the prolif-
ic Benjamin Soule (who also
wrote PAT Shooter along
with several other PICO-8
games).

http://www.lexaloffle.com/
bbs/?tid=1907

Tempest

Author’s comment:
“Not much of a game yet,
but working on a little ad-
venture/sim/survival game.
Having a lot of fun!”

Build a shelter and find
food to survive. Still a
work in progress, but very
promising!

http://www.lexaloffle.com/
bbs/?tid=2186

46

WORMWORMWORMWORM

Author’s comment:
“INSPIRED BY DIARY OF UNSPOKEN TRUTHS,
ARTIST, AND I, ROBOT BY NIALL, MICHAEL,
AND PERSON”

PICO-8 has been a pretty great source for
glitch art. This one is particularly good!

http://www.lexaloffle.com/bbs/?tid=2006

mtrx

Author’s comment:
“an endless running painting with noise”

Enjoyed WORM, but found it had too much
interaction and vowels? Try jph’s mtrx!

http://www.lexaloffle.com/bbs/?tid=1936

Delia Mute in Grave Grotto

Author’s comment:
“small grid roguelike. each inventory slot
can only be used in the direction it is
picked up in.”

http://www.lexaloffle.com/bbs/?tid=2166

47

The Adventures of Jelpi
(with Corrupt mode):
[included demo game]

Author’s comment:
“I thought it might be nice to have a glitch monster who pokes
random values into core memory -- you have to get out before the
level is no longer completable. Although -- there’s always the
chance it will poke an exit index into the map right in front of
you. Or: a superhero game set in a city riddled with corruption.
(wakawaka)”

Everyone with PICO 8 should try this - load up Lexaloffle’s in-
cluded demo game, The Adventures of Jelpi. Right at the start of
code, look for the variable corrupt_mode, and set it to true. How
many times you can get across the stage?

Stray Shot
http://www.lexaloffle.com/
bbs/?tid=1923

Random Sound Generator
http://www.lexaloffle.com/
bbs/?tid=1965

Piano Simulator
http://www.lexaloffle.com/
bbs/?tid=2208

Thopter Escape
http://www.lexaloffle.com/
bbs/?tid=2196

Puzzle Cave:
Raiders of the Lost Potato:
http://www.lexaloffle.com/
bbs/?tid=2039

Endless Train
http://www.lexaloffle.com/
bbs/?tid=2122

Video Poker
http://www.lexaloffle.com/
bbs/?tid=2020

Duangle 2015 intro
http://www.lexaloffle.com/
bbs/?tid=1984

Bounce
http://www.lexaloffle.com/
bbs/?tid=1947

Sumo Pico
http://www.lexaloffle.com/
bbs/?tid=2191

Some other cool stuff to check out:
=-=-=-

PICO-8

